THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MMAT5000 Analysis I (Fall 2015) Quiz 2

Time allowed: 90 minutes Total points: 25 points

- 1. (a) By using the ϵ -definition, show that $\lim_{n \to \infty} \frac{2n}{n+3} = 2$.
 - (b) Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q}; \\ 0 & \text{if } x \in \mathbb{R} \setminus \mathbb{Q}. \end{cases}$$

By using the $\delta - \epsilon$ definition, show that f(x) is continuous at x = 0.

(8 Points)

- 2. (a) State without proof the Bolzano-Weierstrass theorem.
 - (b) Let $S = { \sin n : n \in \mathbb{N} }$. Show that there exists at least one cluster point of S.

(5 Points)

- 3. Let $\{x_n\}$ be a sequence of real numbers.
 - (a) Suppose that $\lim_{n \to \infty} x_n = L$, prove that $\lim_{n \to \infty} |x_n| = |L|$.
 - (b) Does the converse of the statement hold? Prove your assertion.

(5 Points)

4. A set of real numbers K is said to be compact provided that every sequence in K has a subsequence that converges to a point in K.

Suppose that K is a compact subset of \mathbb{R} and $f: K \to \mathbb{R}$ is a continuous function.

- (a) Show that f is bounded above.
- (b) Show that there exists $x_M \in K$ such that $f(x) \leq f(x_M)$ for all $x \in K$.

(7 Points)